• Effective Statistical Learning Methods for Actuaries II Tree-Based Methods and Extensions

Effective Statistical Learning Methods for Actuaries II Tree-Based Methods and Extensions

0.0 (0 reviews)
In stock (1 available)
SKU SHUB14719
$64.91
Free Shipping within the US
Est. Date: Nov 28, 2025

This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, master's students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful. This is the second of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurancedata analytics with applications to P&C, life and health insurance.

  • Author(s): Michel Denuit, Donatien Hainaut, Julien Trufin
  • Publisher: Springer International Publishing
  • Language: en
  • Pages: 228
  • Binding: Paperback
  • Edition: 1st ed. 2020
  • Published: 2020-11-17
  • Dimensions: Height: 9.25 Inches, Length: 6.1 Inches, Weight: 1.00089866948 Pounds, Width: 0.57 Inches
  • Estimated Delivery: Nov 28, 2025
Customer Reviews
0.0 (0 reviews)
No Reviews Yet

Be the first to review this book!