• Manifolds with Group Actions and Elliptic Operators

Manifolds with Group Actions and Elliptic Operators

0.0 (0 reviews)
Out of stock
N/A
Free Shipping within the US
Est. Date: Dec 25, 2025

This work studies equivariant linear second order elliptic operators P on a connected noncompact manifold X with a given action of a group G . The action is assumed to be cocompact, meaning that GV=X for some compact subset V of X . The aim is to study the structure of the convex cone of all positive solutions of Pu= 0. It turns out that the set of all normalized positive solutions which are also eigenfunctions of the given G -action can be realized as a real analytic submanifold *G [0 of an appropriate topological vector space *H . When G is finitely generated, *H has finite dimension, and in nontrivial cases *G [0 is the boundary of a strictly convex body in *H. When G is nilpotent, any positive solution u can be represented as an integral with respect to some uniquely defined positive Borel measure over *G [0 . Lin and Pinchover also discuss related results for parabolic equations on X and for elliptic operators on noncompact manifolds with boundary.

  • Author(s): Vladimir I︠A︡kovlevich Lin, Yehuda Pinchover
  • Publisher: American Mathematical Soc.
  • Language: en
  • Pages: 78
  • Binding: Paperback
  • Published: 1994
  • Dimensions: Height: 10 Inches, Length: 7 Inches, Weight: 0.3 Pounds, Width: 0.25 Inches
  • Estimated Delivery: Dec 25, 2025
Customer Reviews
0.0 (0 reviews)
No Reviews Yet

Be the first to review this book!