• Dataset Shift in Machine Learning

Dataset Shift in Machine Learning

In stock (3 available)
SKU SHUB67868
$47.92
Free Shipping within the US
Est. Date: Feb 20, 2026
Overview

An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions.Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift.ContributorsShai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama

Product Details

ISBN-13: 9780262170055
ISBN-10: 0262170051
Publisher: MIT Press
Publication date: 2008-12-12
Edition description: Illustrated
Pages: 248
Product dimensions: Height: 0.73 Inches, Length: 10.24 Inches, Weight: 1.54984970186 Pounds, Width: 8.24 Inches
Author: Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, Neil D. Lawrence
Language: en
Binding: Hardcover

Books Related to Computers

Discover more books in the same category

Customer Reviews

0.0 (0 reviews)
No Reviews Yet

Be the first to review this book!